

Sport League Scheduling

Jeffrey Larson KTH Automatic Control Group JANUARY 7, 2013

Contents

The General Problem

Why is this Interesting?

Some Approaches

What are we trying to do?

Given a sports league decide, when and who plays in order to. . .

- satisfy some hard and/or soft constraints
- and possibly optimize something.

What are we trying to do?

Given a sports league decide, when and who plays in order to...

- satisfy some hard and/or soft constraints
- and possibly optimize something.
- English Premier League
 - 20 teams in a double round-robin tournament
- National Basketball Association
 - 30 teams each playing 82 games (2 Conferences, each with 3 divisions)
 - Each team plays:
 - 4 games against each team in their division (16 games)
 - 6 teams from other two divisions 4 times (24 games)
 - 4 teams from other two divisions 3 times (12 games)
 - All teams in the other conference twice (30 games)

Possible Objectives/Constraints

- **Breaks**
- Total Travel Distance
- Stadium Availabilities
- Adequate Team Rest
- Fase of Fan Travel
- Consecutive Meeting Between Teams
- Carry Over

Carry Over

	1	C D A B G H E	3	4	5	6	7
Α	Н	С	D	Е	F	G	В
В	С	D	Ε	F	G	Η	Α
C	В	Α	F	Н	Ε	D	G
D	E	В	Α	G	Н	C	F
Ε	D	G	В	Α	C	F	Н
F	G	Н	C	В	Α	Ε	D
G	F	Ε	Н	D	В	Α	C
Н	Α	F	G	C	D	В	Ε

Carry Over

	Α	В	C	D	Ε	F	G	Н
Α	0	0	3	0	1	2	1	0
В	5	0	0	0	1	0	0	1
C	0	1	0	3	0	3	0	0
D	0	2	0	0	2	0	3	0
Ε	1	1	0	2	0	2	0	1
F	0	0	0	0	2	0	3	2
G	0	3	1	0	0	0	0	3
Н	1	0	3	0 0 3 0 2 0 0	1	0	0	0

7 of 14

Who Cares?

- Sports have a surprisingly large economic influence
- It's already going to happen, why not make it better?
- Many of the problems are NP-Hard.

J Larson | KTH Automatic Control Group Sport League Scheduling

NP-Hard

The decision problem:

"Can you feasibly schedule a round-robin tournament given a matrix of venue availabilities"

is NP-Hard.

This is a fairly basic problem, so most often, alternative approaches are necessary.

KTH Automatic Control Group

IP formulation

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard

J Larson KTH Automatic Control Group 9 of 14

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - o Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break

KTH Automatic Control Group J Larson

9 of 14

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team

Sport League Scheduling

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule
 - Assign home/away patterns to each team, then schedule teams.

- IP formulation
 - Define binary variables x_{iip} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule
 - Assign home/away patterns to each team, then schedule teams.
 - Complexity unknown

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule
 - Assign home/away patterns to each team, then schedule teams.
 - Complexity unknown
- Heuristics

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule
 - Assign home/away patterns to each team, then schedule teams.
 - Complexity unknown
- Heuristics
 - Genetic Algorithms

- IP formulation
 - Define binary variables x_{ijp} (1 if i hosts j in period p)
 - Finding a feasible solution to this problem is NP-Hard
- First-Schedule-Then-Break
 - Assign who plays whom first, then decide who is the home team
 - Finding a feasible solution to this problem is NP-Hard
- First-Break-Then-Schedule
 - Assign home/away patterns to each team, then schedule teams.
 - Complexity unknown
- Heuristics
 - Genetic Algorithms
 - Simulated Annealing

First-Break-Then-Schedule

Say we have a 6 team league, and the schedule requires

- 1. a round-robin tournament.
- 2. each team to play at home one of the last two periods,
- 3. no three straight away games allowed.

Then the possible HAPs are:

AAHHA	AHAHA
HAAHA	AHHHA
HAHHA	ННАНА
НННА	AAHAH
AHAAH	AHHAH
HAHAH	ННААН
HHHAH	

11 of 14

Necessary Conditions

We can then take one HAP for each team to form a HAPSet:

Team 1 AHAHA
Team 2 AAHAH
Team 3 AHHAH
Team 4 HAHAH
Team 5 HHAHA
Team 6 HAAHA

When can a HAPSet be scheduled?

Necessary Conditions

We can then take one HAP for each team to form a HAPSet:

Team 1 AHAHA
Team 2 AAHAH
Team 3 AHHAH
Team 4 HAHAH
Team 5 HHAHA
Team 6 HAAHA

When can a HAPSet be scheduled?

A necessary condition is that, given any subset of teams, there must be "sufficient opportunities" for them to play each other.

Larson | KTH Automatic Control Group Sport League Sc

Necessary Conditions

$$\sum_{p \in P} \min \left(c_A(T', p), c_H(T', p) \right) - \binom{|T'|}{2} \ge 0 \qquad \forall T' \subseteq T$$

12 of 14

Necessary Conditions

$$\sum_{p \in P} \min \left(c_A(T', p), c_H(T', p) \right) - \binom{|T'|}{2} \ge 0 \qquad \forall T' \subseteq T$$

Let
$$T' = \{1, 5, 6\}.$$

p	$c_A(T',p)$	$c_H(T',p)$	min
1	1	2	1
2	1	2	1
3	3	0	0
4	0	3	0
5	3	0	0

Sufficient Conditions?

There are HAPSets which satisfy the previous necessary condition, but can not be scheduled.

14 of 14

Swedish Handball League

- 14 team league (consisting of two, 7-team pools).
- League play starts with a round-robin in the pool.
- Then a double round-robin tournament
- League wants teams to play HAH or AHA if they meet three times.

arson | KTH Automatic Control Group Sport League Scheduling